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Abstract. In this lecture, we will be considering the branching multigraph of irreducible representations
of the Sn, although the morals of the arguments are applicable to more general cases. We will liberally

apply criteria about the centralizer of a subrepresentation to show that that the restriction of an irreducible

representation to a subrepresentation has simple multiplicity, which will show that the branching graph of
irreducible representations of Sn is in fact simple. We will then define the Young-Jucys-Murphy elements in

C[Sn], show that they in fact generate the Gelfand-Tsetlin algebra, and see how they relate to the GZ-basis.

N.B. We will assume that all vector spaces are finite-dimensional over C.
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1. Set-up

Recall the following:

Let {1} = G0 < G1 < G2 < · · · be a chain of finite groups, and denote Ĝ = {irreps of G} (irreducible = no
G-invariant subspaces).

For each ρ ∈ Ĝn, V ρ decomposes into a direct sum of irreps µ ∈ Ĝn−1 with multiplicitiesmµ = dim HomG(V µ, V ρ).

V ρ =
⊕

µ∈Ĝn−1

(V µ)mµ .

The branching graph is the directed multigraph whose vertices are elements of
⊔
k≥0 Ĝk, with Ĝn called the

nth level.

Two vertices µ ∈ Ĝn−1 and ρ ∈ Ĝn are connected by k dirrected edges if k = dim HomGn−1
(V µ, V ρ).
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Write µ↗ ρ if µ and ρ are connected, i.e if V µ is a factor in the decomposition of V ρ.

Call the branching graph simple if all multiplicities are either 0 or 1, in which case

V ρ =
⊕
T

Vt

Vt := C, t ∈ T = { increasing paths t = {ρ0 ↗ ρ1 ↗ · · · ↗ ρn = ρ}, ρi ∈ Ĝi }

Choose units vt ∈ Vt ∀t ∈ T , then the GZ − basis of V ρ := {vt : t ∈ T}

Remark 1.1. What this looks like is choosing some generator of V {1}, and tracking its image under each
path in V ρ.

Definition 1.2. The Gelfand-Tsetlin algebra GZn is the algebra generated by the centers Z1 ⊂ C[G1], ..., Zn ⊂
C[Gn]; that is, GZn =< Z1, · · · , Zn >

Proposition 1.3. GZn is the maximal commutative subalgebra in C[Gn] when the branching graph is simple,
and consists of operators that are diagonal in the GZ-basis.

Remark 1.4. We will eventually be looking at how GZn acts on each irrep.

We also recall the following lemma which will be very handy:

Lemma 1.5. (“Criteria”): Let M be a semisimple finite-dimensional C-algebra, N ⊂M a subalgebra.

The centralizer ZN (M) is commutative if and only if, for any ρ ∈ M̂ , the restriction ResMN V
ρ of an irrep of

M to N has simple multiplicities.

As well, keep in mind that irreps (i.e. irreducible representations) of a finite group G ←→ C[G]−modules.

N.B. From now on, take Gn = Sn.

2. Assorted Lemmas, Tidbits, and Facts

We will be looking at the branching graph of irreps of C[Sn] to study the branching graph of Sn. We can do
this because we have a bijection:

Homgroups(G,GL(n,C)) ∼= Hom unital
assoc.
algebras

(C[G],Matnxn(n,C))

To see why this is, if you have any homomorphism on the elements of G, you can extend it to C[G], and
likewise any homomorphism of C[G] can be restricted to the basisG. We also need to think about invertibility,
but will hand-wave that for now.
While Sn has a trivial centre, the group algebraC[Sn] does not, so we can get more information by working
with it.

Note the following fact from elementary algebra:

Fact 2.1. Conjugation preserves cycle type, and if σ = (i1, · · · , ik), then

τστ−1 = (τ(i1), · · · , τ(ik))

Proof. Consult any algebra textbook ever written. �
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As we will be proving results about the centres and centralizers of C[Sn], let’s think about what the centre
Zn := Z(C[Sn]) = { z ∈ C[Sn]) : zy = yz ∀y ∈ C[Sn]) } looks like:

Proposition 2.2. Let z ∈ Zn, z =
∑
g∈Sn cgg. For any g ∈ Sn, h ∈ Sn, hzh−1 = z. Since conjugation will

permute the gi’s within the conjugacy class [g] (which consists of all permutations of a particular cycle type),
we must have that cgi ’s are all the same, i.e.

z =
∑
[g]

c[g]
∑
gi∈[g]

gi

So, we can describe Zn as:

Zn = {Zλ|λ a n}

where

Zλ =
∑
σ∈Sn

w/cycletypeλ

σ

Lemma 2.3. (Lemma 1) Every g ∈ Sn is conjugate to g−1 ∈ Sn, i.e. ∃h ∈ Sn s.t. g−1 = hgh−1. Moreover,
we can find such an h ∈ Sn−1.

Proof. Clearly every permutation ∈ Sn is conjugate to its inverse, since if σ = (i1, ..., in), then σ−1 =
(in, in−1..., i1), ρσρ−1 = (ρ(i1), ...ρ(in)), choose ρ s.t. ρ(i1, ..., in) = (in, in−1, ..., i1).

For g ∈ Sn, let g′ ∈ Sn−1 be the induced permutation in Sn−1. Take h ∈ Sn−1 that conjugates g′ and g′−1,
so g′−1 = hg′h−1. Then h has the fixed point n, so extended to Sn, it satisfies g−1 = hgh−1. �

Before the next lemma, it’s time for another definition:

Definition 2.4. An involution algebra, or a ∗ − algebra, is an algebra A with a map (called an involution)
∗ : A→ A satisfying:

(1) (a∗)∗ = a
(2) (ab)∗ = b∗a∗

(3) (λa+ b)∗ = λ̄a∗ + b∗

Call a∗ the conjugate or adjoint of a.

Example 2.5. C is a ∗-algebra over R with ∗ = conjugation.

Definition 2.6. In an ∗ − algebra A, call a ∈ A normal if a commutes with its conjugate, i.e. aa∗ = a∗a,
and call a self − adjoint if a = a∗.

Lemma 2.7. (Lemma 2) Let A be an ∗ − algebra over C. Then

(1) A is commutative ⇐⇒ all of its elements are normal.
(2) If every real element is self-adjoint, then A commutative.

Proof. (1) ⇒: Trivial
⇐: Suppose aa∗ = a∗a ∀a ∈ A, and denote Asa = {a ∈ A : a self-adjoint}. A can be decomposed as
A = Asa + iAsa (by properties of ∗). If a, b ∈ Asa, then a = a∗ and b = b∗, so (a+ ib)∗ = a∗ + īb∗ =
a− ib. But (a+ ib) normal ⇒ (a+ ib)(a− ib) = (a− ib)(a+ ib)⇒ ab = ba, i.e. a and b commute.
Hence A commutative.
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(2) Let AR be the real subalgebra of A, i.e. A = C
⊗
AR, and assume all a ∈ A are self-conjugate (i.e.

a = a∗∀A ∈ A). Then a, b ∈ AR ⇒ ab = (ab)∗ = b∗a∗ = ba, so AR commutative, but then so is
A = C

⊗
AR.

�

3. Centralizers and Centres

Theorem 3.1. The centralizer ZC[Sn−1](C[Sn]) =: Zn−1(n) of C[Sn−1] in C[Sn] is commutative.

Proof. By lemma 2, we have reduced this problem to checking that every real element of the centralizer
Zn−1(n) ⊂ C[Sn] is self-adjoint.

Let { gi: gi ∈ Sn } be a basis for C[Sn], f =
∑
i cigi ∈ Zn−1(n) ci ’s ∈ R.

What does self-adjoint look like in C[Sn]? The adjoint of g, viewing g as a function g : C[Sn] → C[Sn],
can also be categorized as the function g∗ : C[Sn] → C[Sn] such that< ga, b >=< a, g∗b > ∀a, b ∈ C[Sn].
Take the inner product < gi, gj >= δij . Then < gi, gj >=< ggi, ggj >, and by def. of adjoint we have
< gg1, g2 >=< g1, g

∗g2 >=< g1, g
−1g2 >⇒ g∗ = g−1.

So, (
∑
i cigi)

∗ =
∑
i ci ∗ g

−1
i =

∑
i cig

−1
i . f ∈ Zn−1(n) commutes with all h ∈ Sn−1, so since the expression

for f is unique, this expression is invariant under conjugation by h ∈ Sn−1, f → hfh−1 = f . By lemma 1,
we can choose hi s.t. higih

−1
i = g−1i , so

∑
i cigi 7→

∑
i cig

−1
i . But since hfh−1 = f , that means that cigi a

summand ⇒ cig
−1
i a summand, so f∗ = f . �

In light of this, we have the following:

Theorem 3.2. A a finite-dimensional ∗-algebra over R, B a ∗-subalgebra. Let G = { gi } be a basis of
A that is closed under ∗, and s.t. ∀i,∃ orthogonal bi ∈ B (b∗ = b−1) s.t. bigib

∗
i = g∗i . Then ZB(A) is

commutative, and hence the restriction of any irrep from A to B has simple multiplicity.

In particular, if A is a group algebra of a finite group G and B of H ≤ G, where A has basis G, then
∀g ∈ G,∃h ∈ H, g′ ∈ G s.t. h−1g′h = g, and if we can take g′ = g, then ZB(A) is commutative, and hence
the restriction of any irrep from A to B has simple multiplicity.

Remark 3.3. The proof we just gave for the simplicity of the spectrum (i.e. the branching of the multigraph)
didn’t require any knowledge of the representations themselves, only elementary algebraic properties of the
group.

4. Young-Jucys-Murphy Elements

Remark 4.1. We can also look at the branching through analyzing the centralizers of the group algebras, so
we’re going to develop a more detailed description of the centralizer Zn−1(n) and its relation to GZn.

Definition 4.2. The Y oung−Jucys−Murphy elements (henceforth abbreviated as Y JM − elements) are

Xi = (1i) + (2i) + ...+ ((i− 1)i) ∈ C[Sn]

Remark 4.3. Xi =
∑

(transpositions in Si) -
∑

(transpositions in Si−1), so Xi is the difference of an element
in Z(i) and Z(i− 1), so Xi ∈ GZn; in particular, the Xi’s commute.

Proposition 4.4. Xk /∈ Zk for any k.



YOUNG-JUCYS-MURPHY ELEMENTS 5

Proof. Zk = span{
∑

σ∈Sn
cycletypeλ

σ|λ a partition of k }, so for cycle type λ = 2,1,1,...,1, any element ∈ Zn

consisting of 2-cycles must be expressed in terms of all the 2-cycles ∈ Sn. �

Theorem 4.5. The centre Zn ⊂ C[Sn] is a subalgebra of the one generated by the centre Zn−1 ⊂ C[Sn−1]
and Xn:

Zn ⊂< Zn−1, Xn >

Proof. (Sketch)

(1) Show all classes of one-cycle type permutations lie in < Zn−1, Xn >:

Xn =
∑n−1
i=1 (in) =

∑n
i 6=j;i,j=1(ij) -

∑n−1
i 6=j;i,j=1(ij), where the first sum ∈< Zn−1, Xn > and the sec-

ond ∈ Zn−1. Note thatX2
n =

∑n
i 6=j;i,j=1(in)(jn) =

∑n−1
i6=j;i,j=1(ijn)+1, soX2

n+
∑n−1
i6=j 6=k;i,j,k=1(ijk) =∑n

i 6=j 6=k;i,j,k=1(ijk) ∈< Zn−1, Xn >.

In a similar fashion, we can show that the sumXk−1
n +

∑n
i1 6=i2 6=... 6=ik;i1,...,ik=1(i1 · · · ik) ∈< Zn−1, Xn >,

so that all one-cycle type classes in Zn lie in < Zn−1, Xn >.
(2) Apply the general theorem that Zn is generated by the classes of one-cycle type permutations (i.e.

these permutations are the multiplicative generators) to conclude that Zn ⊂< Zn−1, Xn >.

�

Corollary 4.6. The algebra GZn is generated by the Y JM − elements, i.e.

GZn =< X1, ...Xn >

Proof. By definition, GZn =< Z1, ..., Zn >. We will proceed by induction:
GZ2 = C[S2] =< X1 = 0, X2 >= C. Now, assume by induction that GZn−1 =< X1, ..., Xn−1 >.
NTS GZn =< GZn−1, Xn >.
⊃: Clearly GZn ⊃< GZn−1, Xn > since GZn−1 ⊂ GZn and Xn ∈ Zn.
⊂: By the previous theorem, Zn ⊂< Zn−1, Xn >⊂< GZn−1, Xn >. �

Proposition 4.7. Xk /∈ Zk for any k.

Proof. Zk = span{
∑

σ∈Sn
cycletypeλ

σ|λ a k }, so for cycle type λ = 2,1,1,...,1, any element ∈ Zn consisting of

2-cycles must be expressed in terms of all the 2-cycles ∈ Sn. �

Theorem 4.8. The centralizer Zn−1(n) is generated by the centre Zn−1 ⊂ C[Sn] and the YJM-element Xn:

Zn−1(n) =< Zn−1, Xn >

Proof. Let’s consider a basis for Zn−1(n). This will be the union of the basis of Zn−1, along with classes of
the form:

{
∑

(i1,1 · · · i1,k−1n)(i2,1 · · · i2,k2) · · · (ij,1 · · · in,kj )|k1, ..., kj a n}

where ij,k ∈ { 1, ..., n-1 } and the cycle lengths k1, ..., kj over possible partitions of n. This is because
conjugating by any element h ∈ Zn−1 must fix any z ∈ Zn−1(n), and so

h(
∑

(i1,1 · · · i1,k1−1n)(i2,1 · · · i2,k2) · · · (in,1 · · · in,kn))h−1

=
∑

(h(i1,1) · · ·h(i1,k−1)h(n))(h(i2,1) · · ·h(i2,k2)) · · · (h(in,1) · · ·h(in,kn))

=
∑

(h(i1,1) · · ·h(i1,k−1)n)(h(i2,1) · · ·h(i2,k2)) · · · (h(in,1) · · ·h(in,kn))

=
∑

(i1,1 · · · i1,k−1n)(i2,1 · · · i2,k2) · · · (in,1 · · · in,kn)
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Since n must stay in the cycle of length k1 and h permutes the rest of the elements. As in the proof showing
that Zn ⊂< Zn−1, Xn >, we can take the sum of these classes with the corresponding classes:

{
∑

(i1,1 · · · i1,k)(i2,1 · · · i2,k2) · · · (ij,1 · · · in,kj )|k1, ..., kj a n}

from Zn−1 to obtain classes in Zn, which shows that a basis of Zn−1 can be obtained via a linear combination
of elements in the bases of Zn−1 and Zn:

Zn−1(n) ⊂< Zn−1, Zn >

But we already proved that Zn ⊂< Zn−1, Xn >, so

Zn−1(n) ⊂< Zn−1, Xn >

Conversely, Zn−1 ⊂ Zn−1(n) and Xn commutes with all elements ∈ Zn−1, so we also have

Zn−1(n) ⊃< Zn−1, Xn >

�

5. Simplicity of Branching

Theorem 5.1. (Main) The branching of the chain C[S1] ⊂ · · · ⊂ C[Sn] is simple, hence the same is true
for S1 < ... < Sn.

Proof. Zn−1(n) ⊂< Zn−1, Xn >⊂ GZn commutative ⇒ any restriction from C[Sn] to C[Sn−1] is simple by
“Criteria”. �

Corollary 5.2. GZn is the maximal commutative subalgebra of C[Sn], and in each irrep of Sn, the GZ-basis
is determined up to scalar factors (as a consequence of Schur’s lemma).

Definition 5.3. The union of GZ-bases of irreps ∈ Ŝn is called the Y oung basis.

Proposition 5.4. Let v be a vector in the Young basis of some irrep, and denote the weight of v:

α(v) = (a1, ..., an) ∈ Cn

be the eigenvalues of X1, ..., Xn on v. Denote the spectrum of YJM-elements as

Spec(n) = {α(v)|v ∈ Y oungbasis}

Then α ∈ Spec(n) determines v up to scalar multiplication, and we can easily see that |Spec(n)| =
∑
λ∈Ŝn dim(λ) =

dim(GZn) i.e. dim(GZn) = the sum of pairwise non-isomorphic irreps

Proposition 5.5. We also have a bijection between Spec(n) and the set of paths in the branching graph,
and a natural equivalence relation on Spec(n): if vα and vβ the corresponding vectors in the Young basis
corresponding to weights α and β ∈ Spec(n), then α β if the paths Tα and Tβ have the same end, i.e. vα
and vβ are in the same irrep, so that |Spec(n)/ | = |Ŝn|

Remark 5.6. Later, we will see how these eigenvectors can be found from combinatorial data from Young
tableaux.

6. Takeaways

(1) YJM-elements Xn = (1n) + ...+ ((n− 1)n)
(2) GZn =< Z1, ..., Zn >=< X1, ..., Xn >
(3) The branching of the multigraph of C[Sn] and therefore that of Sn is simple
(4) The spectrum of the YJM-elements determines the branching of the graph
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